Nonclinical Exon Skipping Studies with 2′-O-Methyl Phosphorothioate Antisense Oligonucleotides in mdx and mdx-utrn-/- Mice Inspired by Clinical Trial Results

van Putten M, Tanganyika-de Winter C, Bosgra S, Aartsma-Rus A. Nonclinical Exon Skipping Studies with 2′-O-Methyl Phosphorothioate Antisense Oligonucleotides in mdx and mdx-utrn-/- Mice Inspired by Clinical Trial Results. Nucleic acid therapeutics 2019.

van Putten_2019_Nucleic Acid Ther. Jan 23

Even though exon skipping is already tested in clinical trials and the first compound (eteplirsen) has conditionally been approved by the FDA, many questions are raised by these trials, for which preclinical studies may provide answers. This study looked at several of these questions in mice. It was seen that also in older and more severely affected mice it was effective.  An important point was, however, that only in the young mice it also really induced functional improvement, a point which is also questioned in elderly patients. Furthermore exercise enhanced the uptake and thereby effectiveness of the drugs. In addition, even low levels of dystrophin restoration, which are currently only reached in the trials, already induced some improvement. This study used the AON chemistry (among others drisapersen) for which the development has recently been stopped due to failure of the trial. The compound is still investigated preclinically to improve the efficacy.

 

Abstract

Duchenne muscular dystrophy is a severe, progressive muscle-wasting disease that is caused by mutations that abolish the production of functional dystrophin protein. The exon skipping approach aims to restore the disrupted dystrophin reading frame, to allow the production of partially functional dystrophins, such as found in the less severe Becker muscular dystrophy. Exon skipping is achieved by antisense oligonucleotides (AONs). Several chemical modifications have been tested in nonclinical and clinical trials. The morpholino phosphorodiamidate oligomer eteplirsen has been approved by the Food and Drug Administration, whereas clinical development with the 2′-O-methyl phosphorothioate (2OMePS) AON drisapersen was recently stopped. In this study, we aimed to study various aspects of 2OMePS AONs in nonclinical animal studies. We show that while efficiency of exon skipping restoration is comparable in young and older C57BL/10ScSn-Dmd(mdx)/J (mdx/BL10) mice, functional improvement was only observed for younger treated mice. Muscle quality did not affect exon skipping efficiency as exon skip and dystrophin levels were similar between mdx/BL10 and more severely affected, age-matched D2-mdx mice. We further report that treadmill running increases AON uptake and dystrophin levels in mdx/BL10 mice. Finally, we show that even low levels of exon skipping and dystrophin restoration are sufficient to significantly increase the survival of mdx-utrn-/- mice from 70 to 97 days.

search previous next tag category expand menu location phone mail time cart zoom edit close